Laboratorio Operaciones Unitarias 1 (2005)

Classification of Measurements. Several measurements on the
same or different quantities are independent when (1) no mathematical
relation necessarily exists among them and (2) the different measure-
ments are entirely unbiased by each other or by other results.

Measurements that satisfy the second condition, but not the first, are
known as “conditioned measurements.”” Thus, in the complete chemical
analysis of a material, a mathematical relation must exist among the
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percentages of the various <~onstituents, inasmuch as these must add up
to 100.

Measurements satisfying the first, but not the second condition, are
said to be “dependent.” It is highly desirable, but often difficult, to
avoid dependent measurements. For instance, when a series of readings
are being made by resetting the indicator on a scale, if the previous results
are remembered, one must contend with the temptation to make the new
readings agree closely with the previous results rather than to exercise
completely independent judgment. Such a practice renders it impossible
to determine the true precision of the observations, since the various
readings are not truly independent but are affected by preconceived
notions.

All measurements may be classed as either direct or indirect. A direct
measurement is made whenever the magnitude of the measured quantity
is determined by direct observation from the measuring instrument.
The measurement of length by a meter stick, time by a clock, and weight
by a balance are examples of direct measurements.

In contrast to this direct procedure, the magnitude of a quantity is
often measured by calculation from the magnitudes of other quantities
directly measured, the calculation being made by means of some func-
tional relationship existing among the quantities. The estimate of error
in an indirect measurement is more difficult than the estimate of error
in a direct measurement, since the errors in the direct measurements
concerned may either augment or offset each other’s effect on the error
of the calculated result, depending upon their signs and the form of
the functional relationship. Indirect measurements may be made for
the purpose of computing a desired quantity from a group of directly
measurable quantities by means of a known functional relationship
containing known constants or for the purpose of determining the
unknown constants in a functional relationship of known form.

Propagation of Errors. When the desired quantity M is related
to the several directly measured quantities M,, M,, . . ., M, by the
equation

M =~yM,M,, ... ,M,) (2-2)

M becomes an indirectly measured quantity. In general, the true value
of M cannot be known because the true values of M,, M, ... ,6 M,
are unknown, but the most probable value of M, denoted by @, may be
calculated by inserting the most probable values of My, M., . . ., M,
denoted by q1, q2, . . ., qn, into (2-2). Evidently, the errors in the
directly measured quantities will result in an error in the calculated
quantity, the value of which it is important to ascertain. If the original
measurements are available, an obvious method of procedure would be
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to calculate a value of M corresponding to every set of measurements.
The mean of all these calculated values could then be obtained and the
characteristic errors of the mean calculated from the residuals.

Very often, however, the only data available are qi, ¢z, . . ., ¢u,
together with their characteristic errors, from which it is necessary to
estimate the characteristic errors in Q. It may be that qi, g2, . . . , ¢a
are the most probable values calculated from a set of observations, or
they may be merely estimated values employed in the preliminary dis-
cussion of the proposed measurement. In these cases, it becomes neces-
sary to devise a procedure for relating the errors in the measured quanti-
ties to the error in the calculated quantity.

Such a procedure makes possible the solution of the two fundamental
problems of indirect measurements:

1. Given the errors of several directly measured quantities, to calcu-
late the error of any function of these quantities

2. Given a prescribed error in the quantity to be indirectly measured,
to specify the allowable errors in the directly measured quantities

The method is as follows: In terms of the most probable quantities,
(2-2) may be written

Q = v(q1,q2, . - . ,q») (2-3)

The differential change in @ corresponding to a differential change in

each of the ¢’s is

dQ = ;;: dq: + --53—1' dgs - - - a—‘?’ dg. (2-4)
where dv/d¢, denotes the partial derivative of v with respect to ¢, and
is obtained by differentiating vy with respect to q,, with all other ¢’s
regarded as constant.

If the differentials dq., dgs, . . . , dg. are replaced by small finite
increments Aqi, Ags, . . . , Agn, there results as a good approximationt

t The limitations on this approximation by means of the first differential may

become clearer from the following considerations: Krrors of A¢i, Aqs, . . ., Ag. in
the quantities ¢y, qa, . . . , ¢ will produce a corresponding error AQ in @ according
to the equation
Q + AQ = v(q1 + Aqy, q2 + Aqay . . ., Gn + Aga)

Expansion of v in the neighborhood of q1, g2, . . . , ¢x by means of Taylor’s theorem
gives
Q +4Q = ( Y+ g4 Dngeg oo 4 2y

= vYnqz - - - 4qn aq q1 g2 qz In qn

*y (Aqi)?
ik ap? 1-2 i

(Terms of higher order)

If the quantities Aq are small, the terms of higher order are negligible, and the expres-
sion reduces to (2-5).
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for AQ the expression

dy dy dy
AQ = Y AG + X Aga+ - - - A 2-5)
Q 7 gu+6q2 72 + + 7. A0 (2-5)
T'he quantities Aqi, Agqs, . . . , Ag, may be considered as errors in
qu g2 . . ., qn, and (2-5) provides a means of computing the resulting

error in the function. Equation (2-5) holds for any type of errors, pro-
vided only that they are small. On the other hand, (2-5) does not
utilize all the information that may be available and consequently often
overestimates the error in . The following example will illustrate the
use of (2-5) and also point out its defects.

Example During the course of an analysis of plant performance it becomes
necessary to determine the average velocity of water flowing through a certain pipe.
The most convenient method of measurement is an indirect one: measurement of the
weight W of water issuing from the pipe during the time {, measurement of the pipe
diameter D, and calculation of the average velocity from the density p of the water
and the relation
_W 4w
T tAp T wDp
Before undertaking the measurement, the engineer decides to calculate the uncertainty
in his result by means of the procedure based upon Eq. (2-5). Accordingly, he esti-
mates the values of the variables and their uncertainty as follows:

1. Weight of water. Information concerning the weighing scales available sets
100 Ib as a convenient figure for the weight of water to be collected. The particular
scale to be used is not yet known. However, the engineer recognizes that some of the
scales in the plant are in rather poor repair and, on the chance that one of these might
be used, takes a ‘‘conservative’ uncertainty of +5 lb.

2. Time of collection of sample. Previous information indicates that approxi-
mately 70 sec will be required to collect the 100-1b sample. An electric clock will be
used to measure the elapsed time. The engineer feels that human and clock error
combined will not exceed +1 sec.

3. The pipe area. The nominal diameter of the pipe is 1 in. Taking into account
the deviations from roundness, caliper error, etc., the engineer mentally estimates an
uncertainty in the pipe diameter not exceeding +0.03 in.

4. Water density. The water temperature will be about 60°F. The density at
60°F is 62.34 pef. The estimated uncertainty in the temperature is +3°F corre-
sponding to a density variation of less than 0.1 per cent. Since the uncertainty in the
water density is an order of magnitude less than that of the other quantities, its effect
may be neglected.

Approximate values of the data and the estimated maximum errors are then the
following:

Vav (2-6)

Pavishle Approximate

Measured to
value

w 100 1b +51b
t 70 sec +1.0 sec
D 1in. +0.03 in.
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The partial derivatives of (2-6) needed for use in an equation of the forix of (2-5)
are

We _ 4 Oy AW WV _ 8W
oW ~ trD?%p at xD2%pl? aD twpl)?
Consequently,
4 AW 8w
_ _4 5 _l__‘l_—_‘g______ _ 4-100- 144 _ 8100 1,728
“F0-314-1-628" T 3116237022 T T0-3.14-623-1°D
= 0.042AW — 0.060A¢ — 100AD (2-7)

In order to obtain the maximum error, the sign of the AW will be taken as positive,
and the signs of Af and AD will be taken negative. Therefore,

AVmax = 0.042 - 5 + 0.060 - 1.0 + lﬂﬁm = 0.210 4 0.060 4 0.252

12
= (.522 fps
Since the approximate value of the velocity is

4100 - 144

V=0 3141 623

= 4.21 fps

the maximum percentage error is +(0.522/4.21)100 = +12.4 per cent.

Some important points are illustrated by the above example. It will
be seen that the error in a calculated quantity that is a function of several
directly measured quantities depends on (1) the nature of the function,
(2) the magnitudes of the measured quantities, and (3) the magnitudes
of the errors. Turthermore, variables such as p, whose values are known
much more accurately than the rest of the variables, may be considered
constants, since the error they introduce into the final result will be
negligible,

It is evident that Iiq. (2-5) quite probably overestimates the error
involved in the measurement. It takes no account of the possibility
of compensating errors. KEven more serious is its failure to take into
account the method used to obtain the original estimates of the uncer-
ainties in the directly measured quantities. Presumably the engi-
neer felt that errors exceeding those estimated were most improbable.
Clearly, then, the simultaneous occurrence of three error extremes 1is
distinetly less probable than the occurrence of more modest errors. I'or
example, suppose that the probability of the assumed errors in W, {, and
D in Example 2-1 are each 0.1, i.e., that 90 per cent of the time the actual
errors are smaller than this. Then the probability of obtaining an error
in V as large as the calculated 12.4 per cent is only one in a thousand.
Modern statistical methods often permit the analyst to take such prob-
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ability factors into account in the error analysis. When this is possible,
the results are more realistic and valuable. Succeeding sections will
discuss some of these methods.

Despite the fact that Eq. (2-5) usually overestimates the uncertainty
in a dependent quantity, it is a valuable tool. In the case of formulas
of the type of (2-6), consisting of the products of powers of the variables,
it is possible to effect a simplification in the calculations by the use of
fractional errors. To illustrate this, consider the general function

Q - quaqbb . . . q»“ (2_8)
Applying (2-5) gives
AQ = (¢ - - - ¢2™)ags" ' Aga + (a°¢° + « + ga™)bg" 1 Agy + ¢ -
and égma%?‘+b%%-’+--- —I—n%‘iﬁ (2-9)

which states that the fractional error in the function Q is given by the
sum of the fractional errors in the measured quantities, each multiplied
by the respective power to which it appears in the function. When
(2-9) is multiplied by 100, it is seen that the same rule applies to per-
centage errors. This rule provides a rapid solution of the preceding
example.

Example 1t is suggested that an attempt be made to measure V,, in (2-6) to
within an error of +2.0 per cent. Under this condition, what are the allowable
errors in the directly measured quantities W, t, and D?

Either (2-5) or (2-9) may be used, but it is apparent that there is no unique answer
to the problem as stated. More conditions are necessary. For example, the value
of two errors might be fixed, whereupon the value of the third is fixed. In this general
type of problem, it must be recognized that the labor and expense involved in measur-
ing the various quantities to a given degree of accuracy are different. lIdeally, those
quantities which are easiest to measure should be measured the most accurately,
more tolerance being allowed in the more difficult measurements, so that the required
accuracy in the final result will be obtained with a minimum of expense for labor and
apparatus. Because there is no general relationship between the difliculty and the
accuracy of measurements, this condition cannot be given exact mathematical expres-
sion. As a starting point, it is customary to impose the condition that the errors in
each of the directly measured quantities contribute equally to the error in the function.
This condition is known as the “‘principle of equal effects.”

Applied to (2-5) with the understanding that the sign of each Ag will be taken
such as to make all terms of the same sign and will result in the maximum allowable
error in AQ, the principle of equal effects gives

ay avy dy
= — =a —_— = s+ s+ + = — Agn 10
AQ =n 3q: Aqr = n 0 Aqs n 0. q (2-10)
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In the case of a function such as (2-8), it is convenient to work with fractional errors,
and the principle of equal effects reduces (2-9) to

%Q-_= na i;_q._. = nb %?—’ ete. (2-11)

Employing (2-11) in the solution of Example 2-2, there resuits in the case of W

AV _ AW
IOO—I—,— =20=3-1 W 100

from which 100(AW /W) = 0.7 or £0.71b/1001b. Similar calculations for the allow-
able errors in ¢ and D give +0.5 sec and +0.003 in., respectively. These results
should not be considered inflexible but should serve as a basis for deciding the optimum
errors to tolerate in each quantity to ensure an error of no more than 2 per cent in the
calculated velocity, with minimum labor and apparatus.

Discussions of the kind illustrated by the two preceding examples
often serve to reveal that some quantity is being measured with a higher
degree of precision than necessary, in view of the magnitude of the errors
inherent in the other quantities concerned, or that particular attention
must be focused upon the accurate measurement of a certain quantity,
because of its unusually large influence on the final calculated result.
Unfortunately, in many important cases the functions are quite complex,
and calculations involving data known only in the form of tables and
curves are necessary. The estimation of errors in such cases is more
difficult and not infrequently can be accomplished only by actual repe-
tition of the calculations and comparison of the results obtained from
different sets of values of the measured quantities.

Many important design calculations necessitate graphical integrations.
For example, one may face the problem of designing a liquid-liquid
heat exchanger wherein both individual film coefficients vary considerably
with temperature. The heat-transfer area is calculated by graphical
evaluation of the integral

Ae dq
A= L Ua (2-12)

where ¢ and A are related by a heat balance and U, the over-all coefficient,
at any point, is a complex function of the liquid’s physical properties,
which in turn depend upon the temperature. In this case, a reliable
estimate of the error in A due to a given error in the terminal tempera-
tures is best obtained by repetition of the entire calculation, if different
values for the terminal temperatures are used. It is especially important
to note that the smaller the temperature difference A, the more serious
an error of given magnitude in the measured temperatures becomes.
Particularly serious in many calculations on mass-transfer processes
are errors in equilibrium data. The common calculation on a McCabe-
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Thiele diagram of the number of theoretical plates required to effect
a given separation with a given reflux ratio provides an instructive
example of the importance of accurate equilibrium data. Figure

represents a diagram for a binary mixture of low relative volatility. A
small percentage error in the equilibrium data will cause a large per-
centage error in the vertical distance between operating line and equi-
librium curve, with a resultant large percentage error in the number of

Vapor-liquid
equilibrium
curve

e S . S N S S S R ————

Bottoms Feed Distillate
x
F1a. McCabe-Thicle diagram for binary system separable with difficulty.

theoretical plates. The change in the number of theoretical plates due
to error in the equilibrium data is best computed by drawing in the
equilibrium curve in the position corresponding to the estimated error
and repeating the construction for determination of the number of
theoretical plates. A similar procedure should be employed in the esti-
mation of the error produced by equilibrium data in the calculation of the
number of transfer units in adsorption, extraction, or distillation.
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